本文共 9559 字,大约阅读时间需要 31 分钟。
作者:摇摆少年梦
微信号: zhouzhihubeyond在运行Spar应用程序时,会将spark应用程序打包后使用spark-submit脚本提交到Spark中运行,执行提交命令如下:
root@sparkmaster:/hadoopLearning/spark-1.5.0-bin-hadoop2.4/bin# ./spark-submit --master spark://sparkmaster:7077 --class SparkWordCount --executor-memory 1g /root/IdeaProjects/SparkWordCount/out/artifacts/SparkWord Count_jar/SparkWordCount.jar hdfs://ns1/README.md hdfs://ns1/SparkWordCountResult
为弄清楚整个流程,我们先来分析一下spark-submit脚本,spark-submit脚本内容如下:
#!/usr/bin/env bashSPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)"# disable randomized hash for string in Python 3.3+export PYTHONHASHSEED=0#spark-submit最终调用的是spark-class脚本#传入的类是org.apache.spark.deploy.SparkSubmit#及其它传入的参数,如deploy mode、executor-memory等exec "$SPARK_HOME"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"
spark-class脚本会加载spark配置的环境变量信息、定位依赖包spark-assembly-1.5.0-hadoop2.4.0.jar文件(以spark1.5.0为例)等,然后再调用org.apache.spark.launcher.Main正式启动Spark应用程序的运行,具体如下:
# Figure out where Spark is installed#定位SAPRK_HOME目录export SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)"#加载load-spark-env.sh,运行环境相关信息#例如配置文件conf下的spark-env.sh等. "$SPARK_HOME"/bin/load-spark-env.sh# Find the java binary# 定位JAVA_HOME目录if [ -n "${JAVA_HOME}" ]; then RUNNER="${JAVA_HOME}/bin/java"else if [ `command -v java` ]; then RUNNER="java" else echo "JAVA_HOME is not set" >&2 exit 1 fifi# Find assembly jar#定位spark-assembly-1.5.0-hadoop2.4.0.jar文件(以spark1.5.0为例)#这意味着任务提交时无需将该JAR文件打包SPARK_ASSEMBLY_JAR=if [ -f "$SPARK_HOME/RELEASE" ]; then ASSEMBLY_DIR="$SPARK_HOME/lib"else ASSEMBLY_DIR="$SPARK_HOME/assembly/target/scala-$SPARK_SCALA_VERSION"finum_jars="$(ls -1 "$ASSEMBLY_DIR" | grep "^spark-assembly.*hadoop.*\.jar$" | wc -l)"if [ "$num_jars" -eq "0" -a -z "$SPARK_ASSEMBLY_JAR" ]; then echo "Failed to find Spark assembly in $ASSEMBLY_DIR." 1>&2 echo "You need to build Spark before running this program." 1>&2 exit 1fiASSEMBLY_JARS="$(ls -1 "$ASSEMBLY_DIR" | grep "^spark-assembly.*hadoop.*\.jar$" || true)"if [ "$num_jars" -gt "1" ]; then echo "Found multiple Spark assembly jars in $ASSEMBLY_DIR:" 1>&2 echo "$ASSEMBLY_JARS" 1>&2 echo "Please remove all but one jar." 1>&2 exit 1fiSPARK_ASSEMBLY_JAR="${ASSEMBLY_DIR}/${ASSEMBLY_JARS}"LAUNCH_CLASSPATH="$SPARK_ASSEMBLY_JAR"# Add the launcher build dir to the classpath if requested.if [ -n "$SPARK_PREPEND_CLASSES" ]; then LAUNCH_CLASSPATH="$SPARK_HOME/launcher/target/scala-$SPARK_SCALA_VERSION/classes:$LAUNCH_CLASSPATH"fiexport _SPARK_ASSEMBLY="$SPARK_ASSEMBLY_JAR"# The launcher library will print arguments separated by a NULL character, to allow arguments with# characters that would be otherwise interpreted by the shell. Read that in a while loop, populating# an array that will be used to exec the final command.#执行org.apache.spark.launcher.Main作为Spark应用程序的主入口CMD=()while IFS= read -d '' -r ARG; do CMD+=("$ARG")done < <("$RUNNER" -cp "$LAUNCH_CLASSPATH" org.apache.spark.launcher.Main "$@")exec "${CMD[@]}"
从上述代码中,可以看到,通过org.apache.spark.launcher.Main类启动org.apache.spark.deploy.SparkSubmit的执行,SparkSubmit部分源码如下:
//SparkSubmit Main方法def main(args: Array[String]): Unit = { //任务提交时设置的参数,见图2 val appArgs = new SparkSubmitAarguments(args) if (appArgs.verbose) { // scalastyle:off println printStream.println(appArgs) // scalastyle:on println } appArgs.action match { //任务提交时,执行submit(appArgs) case SparkSubmitAction.SUBMIT => submit(appArgs) case SparkSubmitAction.KILL => kill(appArgs) case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs) } }
进入submit方法:
/** * Submit the application using the provided parameters. * * This runs in two steps. First, we prepare the launch environment by setting up * the appropriate classpath, system properties, and application arguments for * running the child main class based on the cluster manager and the deploy mode. * Second, we use this launch environment to invoke the main method of the child * main class. */ private def submit(args: SparkSubmitArguments): Unit = { //运行参数等信息,见图2 val (childArgs, childClasspath, sysProps, childMainClass) = prepareSubmitEnvironment(args) //定义在submit方法中的方法doRunMain() def doRunMain(): Unit = { if (args.proxyUser != null) { val proxyUser = UserGroupInformation.createProxyUser(args.proxyUser, UserGroupInformation.getCurrentUser()) try { proxyUser.doAs(new PrivilegedExceptionAction[Unit]() { override def run(): Unit = { //执行runMain方法 runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose) } }) } catch { case e: Exception => // Hadoop's AuthorizationException suppresses the exception's stack trace, which // makes the message printed to the output by the JVM not very helpful. Instead, // detect exceptions with empty stack traces here, and treat them differently. if (e.getStackTrace().length == 0) { // scalastyle:off println printStream.println(s"ERROR: ${e.getClass().getName()}: ${e.getMessage()}") // scalastyle:on println exitFn(1) } else { throw e } } } else { //执行runMain方法 runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose) } } // In standalone cluster mode, there are two submission gateways: // (1) The traditional Akka gateway using o.a.s.deploy.Client as a wrapper // (2) The new REST-based gateway introduced in Spark 1.3 // The latter is the default behavior as of Spark 1.3, but Spark submit will fail over // to use the legacy gateway if the master endpoint turns out to be not a REST server. if (args.isStandaloneCluster && args.useRest) { try { // scalastyle:off println printStream.println("Running Spark using the REST application submission protocol.") // scalastyle:on println //调用submit方法中的doRunMain方法 doRunMain() } catch { // Fail over to use the legacy submission gateway case e: SubmitRestConnectionException => printWarning(s"Master endpoint ${args.master} was not a REST server. " + "Falling back to legacy submission gateway instead.") args.useRest = false submit(args) } // In all other modes, just run the main class as prepared } else { //调用submit方法中的doRunMain方法 doRunMain() } }
从上面的代码可以看到,最终调用的是runMain方法,其源码如下:
/** * Run the main method of the child class using the provided launch environment. * * Note that this main class will not be the one provided by the user if we're * running cluster deploy mode or python applications. */ private def runMain( childArgs: Seq[String], childClasspath: Seq[String], sysProps: Map[String, String], childMainClass: String, verbose: Boolean): Unit = { // scalastyle:off println if (verbose) { printStream.println(s"Main class:\n$childMainClass") printStream.println(s"Arguments:\n${childArgs.mkString("\n")}") printStream.println(s"System properties:\n${sysProps.mkString("\n")}") printStream.println(s"Classpath elements:\n${childClasspath.mkString("\n")}") printStream.println("\n") } // scalastyle:on println val loader = if (sysProps.getOrElse("spark.driver.userClassPathFirst", "false").toBoolean) { new ChildFirstURLClassLoader(new Array[URL](0), Thread.currentThread.getContextClassLoader) } else { new MutableURLClassLoader(new Array[URL](0), Thread.currentThread.getContextClassLoader) } Thread.currentThread.setContextClassLoader(loader) for (jar <- childClasspath) { addJarToClasspath(jar, loader) } for ((key, value) <- sysProps) { System.setProperty(key, value) } var mainClass: Class[_] = null try { //复用反射加载childMainClass,这里为SparkWordCount mainClass = Utils.classForName(childMainClass) } catch { case e: ClassNotFoundException => e.printStackTrace(printStream) if (childMainClass.contains("thriftserver")) { // scalastyle:off println printStream.println(s"Failed to load main class $childMainClass.") printStream.println("You need to build Spark with -Phive and -Phive-thriftserver.") // scalastyle:on println } System.exit(CLASS_NOT_FOUND_EXIT_STATUS) } // SPARK-4170 if (classOf[scala.App].isAssignableFrom(mainClass)) { printWarning("Subclasses of scala.App may not work correctly. Use a main() method instead.") } //调用反射机制加载main方法,即SparkWordCount中的main方法 val mainMethod = mainClass.getMethod("main", new Array[String](0).getClass) if (!Modifier.isStatic(mainMethod.getModifiers)) { throw new IllegalStateException("The main method in the given main class must be static") } def findCause(t: Throwable): Throwable = t match { case e: UndeclaredThrowableException => if (e.getCause() != null) findCause(e.getCause()) else e case e: InvocationTargetException => if (e.getCause() != null) findCause(e.getCause()) else e case e: Throwable => e } try { //执行main方法,即执行SparkWordCount mainMethod.invoke(null, childArgs.toArray) } catch { case t: Throwable => throw findCause(t) } }
mainMethod.invoke(null, childArgs.toArray)方法执行完毕后,进入SparkWordCount的main方法,执行Spark应用程序,如下图